Coffee Sessions #65

The Future of Data Science Platforms is Accessibility

The machine learning and data science space is blowing up -- new tools are popping up every day. While we seem to have every type of "Flow" and "Store" you could imagine, few people really understand how to glue this stuff together. Despite all the tools we have available, we still see companies failing to leverage data science effectively to drive business results.  Instead of spending time driving business results, data scientists spend their time fiddling with Kubernetes, trying to debug that Spark serialization error figuring out how to map their code into the awkward "AI Pipeline" SDK. We have an industry filled with tools built by engineers... for engineers, rather than for data scientists. It's deeply disempowering. Meanwhile, data is still used effectively to drive decisions in many companies. Analysts have been solving very similar problems on the back of applications like Excel, Tableau, and Mode for literally decades. While there are still challenges in analytics, the MLOps space could learn something from analytics tools. Analytics tools better understand how to make their tools accessible. Analytics tools better understand the value of iterability. Analytics tools better understand that data problems are wicked problems: - we have to iterate on the formulation and solution simultaneously - they involve many stakeholders with different opinions - there's no "right" answer - the problems are never 100% solved. If we're going to really drive the most business value from data science, we need to understand how to design our teams and tools to effectively work against such problems. The future of data science platforms is accessibility and iterability.

Take-aways

- System/tooling improvements often lower barriers to entry - High level programming languages => more, better applications - Data tools like SQL, Tableau => more, better analysis - Domain experts are trying to convert their knowledge into an accessible form to many of you who will then try to somehow encode it (perhaps mixed with your own understanding of how data is collected, served, etc) - Giving more agency to domain experts (e.g. to build datasets, models, etc) will help us build better data products

In this episode

Skylar Payne

Skylar Payne

Machine Learning Engineer, HealthRhythms

Data is a superpower, and Skylar has been passionate about applying it to solve important problems across society. For several years, Skylar worked on large-scale, personalized search and recommendation at LinkedIn -- leading teams to make step-function improvements in our machine learning systems to help people find the best-fit role. Since then, he shifted my focus to applying machine learning to mental health care to ensure the best access and quality for all. To decompress from his workaholism, Skylar loves lifting weights, writing music, and hanging out at the beach!

Twitter

LinkedIn

Demetrios Brinkmann

Demetrios Brinkmann

Host

Demetrios is one of the main organizers of the MLOps community and currently resides in a small town outside Frankfurt, Germany. He is an avid traveller who taught English as a second language to see the world and learn about new cultures. Demetrios fell into the Machine Learning Operations world, and since, has interviewed the leading names around MLOps, Data Science, and ML. Since diving into the nitty-gritty of Machine Learning Operations he felt a strong calling to explore the ethical issues surrounding ML. When he is not conducting interviews you can find him making stone stacking with his daughter in the woods or playing the ukulele by the campfire.

Vishnu Rachakonda

Vishnu Rachakonda

Host

Vishnu Rachakonda is the operations lead for the MLOps Community and co-hosts the MLOps Coffee Sessions podcast. He is a machine learning engineer at Tesseract Health, a 4Catalyzer company focused on retinal imaging. In this role, he builds machine learning models for clinical workflow augmentation and diagnostics in on-device and cloud use cases. Since studying bioengineering at Penn, Vishnu has been actively working in the fields of computational biomedicine and MLOps. In his spare time, Vishnu enjoys suspending all logic to watch Indian action movies, playing chess, and writing.