Meetup #58

Model Watching: Keeping Your Project in Production

A great deal of time is spent building out the most effectively tuned model, production-hardened code, and elegant implementation for a business problem. Shipping our precious and clever gems to production is not the end of the solution lifecycle, though, and many-an-abandoned projects can attest to this. In this talk, we will discuss how to think about model attribution, monitoring of results, and how (and when) to report those results to the business to ensure a long-lived and healthy solution that actually solves the problem you set out to solve.

Take-aways

Understanding why attribution and performance monitoring is critical for long-term project success Borrowing hypothesis testing, stratification for latent confounding variable minimization, and statistical significance estimation from other fields can help to explain the value of your project to a business Unlike in street racing, drifting is not cool in ML, but it will happen. Being prepared to know when to intervene will help to keep your project running.

In this episode

Ben Wilson

Ben Wilson

Practice Lead Resident Solutions Architect, Databricks

Ben Wilson has worked as a professional data scientist for more than ten years. He currently works as a resident solutions architect at Databricks, where he focuses on machine learning production architecture with companies ranging from 5-person startups to global Fortune 100. Ben is the creator and lead developer of the Databricks Labs AutoML project, a Scala-and Python-based toolkit that simplifies machine learning feature engineering, model tuning, and pipeline-enabled modeling. He's the author of Machine Learning Engineering in Action, a primer on building, maintaining, and extending production ML projects.

LinkedIn

Ben Wilson

Ben Wilson

Practice Lead Resident Solutions Architect, Databricks

Ben Wilson has worked as a professional data scientist for more than ten years. He currently works as a resident solutions architect at Databricks, where he focuses on machine learning production architecture with companies ranging from 5-person startups to global Fortune 100. Ben is the creator and lead developer of the Databricks Labs AutoML project, a Scala-and Python-based toolkit that simplifies machine learning feature engineering, model tuning, and pipeline-enabled modeling. He's the author of Machine Learning Engineering in Action, a primer on building, maintaining, and extending production ML projects.

LinkedIn

Demetrios Brinkmann

Demetrios Brinkmann

Host

Demetrios is one of the main organizers of the MLOps community and currently resides in a small town outside Frankfurt, Germany. He is an avid traveller who taught English as a second language to see the world and learn about new cultures. Demetrios fell into the Machine Learning Operations world, and since, has interviewed the leading names around MLOps, Data Science, and ML. Since diving into the nitty-gritty of Machine Learning Operations he felt a strong calling to explore the ethical issues surrounding ML. When he is not conducting interviews you can find him making stone stacking with his daughter in the woods or playing the ukulele by the campfire.