Meetup #79

Engineering Best Practices for Machine Learning

The increasing reliance on applications with ML components calls for mature engineering techniques that ensure these are built in a robust and future-proof manner. Moreover, the negative impact that improper use of ML can have on users and society is now widely recognized and policymakers are working on guidelines aiming to promote trustworthy development of ML. To address these issues, we mined both academic and non-academic literature and compiled a catalog of engineering best practices for the development of ML applications. The catalog was validated with over 500 teams of practitioners, which allowed us to extract valuable information about the practice difficulty or the effects of adopting the practices. In this talk, I will give an overview of our findings, which indicate, for example, that teams tend to neglect traditional software engineering practices, or that effects such as traceability or reproducibility can be accurately predicted from assessing the practice adoption. Moreover, I will present a quantitative method to assess a team’s engineering ability to develop software with ML components and suggest improvements for your team’s processes.

In this episode

Alex Serban

Alex Serban

PhD Candidate, Radboud University

Alex works at the intersection of machine learning and software engineering, looking for ways to design, develop and maintain robust machine learning solutions. Since robustness has broad implications along each stage of the development life cycle, Alex studies robustness both from a system (engineering) and from an algorithmic prescriptive.

Twitter

LinkedIn

Demetrios Brinkmann

Demetrios Brinkmann

Host

Demetrios is one of the main organizers of the MLOps community and currently resides in a small town outside Frankfurt, Germany. He is an avid traveller who taught English as a second language to see the world and learn about new cultures. Demetrios fell into the Machine Learning Operations world, and since, has interviewed the leading names around MLOps, Data Science, and ML. Since diving into the nitty-gritty of Machine Learning Operations he felt a strong calling to explore the ethical issues surrounding ML. When he is not conducting interviews you can find him making stone stacking with his daughter in the woods or playing the ukulele by the campfire.