Coffee Sessions #101

Declarative Machine Learning Systems: Big Tech Level ML Without a Big Tech Team

Declarative Machine Learning Systems are the next step in the evolution of Machine Learning infrastructure. With such systems, organizations can marry the flexibility of low-level APIs with the simplicity of AutoML. Companies adopting such systems can increase the speed of machine learning development, reaching the quality and scalability that only big tech companies could achieve until now, without the need for a team of several thousand people. Predibase is the turnkey solution for adopting declarative ML systems at an enterprise scale.

Take-aways

In this episode

Piero Molino

Piero Molino

CEO, Predibase

Piero Molino is CEO and co-founder of Predibase, a company redefining ML tooling. Most recently, he has been Staff Research Scientist at Stanford University working on Machine Learning systems and algorithms in Prof. Chris RĂ©'s' Hazy group. Piero completed a Ph.D. in Question Answering at the University of Bari, Italy. Founded QuestionCube, a startup that built a framework for semantic search and QA. Worked for Yahoo Labs in Barcelona on learning to rank, IBM Watson in New York on natural language processing with deep learning, and then joined Geometric Intelligence, where he worked on grounded language understanding. After Uber acquired Geometric Intelligence, Piero became one of the founding members of Uber AI Labs. At Uber, he worked on research topics including Dialogue Systems, Language Generation, Graph Representation Learning, Computer Vision, Reinforcement Learning, and Meta-Learning. He also worked on several deployed systems like COTA, an ML and NLP model for Customer Support, Dialogue Systems for driver's hands-free dispatch, the Uber Eats Recommender System with graph learning and collusion detection. He is the author of Ludwig, a Linux-Foundation-backed open source declarative deep learning framework.

Twitter

LinkedIn

Demetrios Brinkmann

Demetrios Brinkmann

Host

Demetrios is one of the main organizers of the MLOps community and currently resides in a small town outside Frankfurt, Germany. He is an avid traveller who taught English as a second language to see the world and learn about new cultures. Demetrios fell into the Machine Learning Operations world, and since, has interviewed the leading names around MLOps, Data Science, and ML. Since diving into the nitty-gritty of Machine Learning Operations he felt a strong calling to explore the ethical issues surrounding ML. When he is not conducting interviews you can find him making stone stacking with his daughter in the woods or playing the ukulele by the campfire.

Vishnu Rachakonda

Vishnu Rachakonda

Host

Vishnu Rachakonda is the operations lead for the MLOps Community and co-hosts the MLOps Coffee Sessions podcast. He is a machine learning engineer at Tesseract Health, a 4Catalyzer company focused on retinal imaging. In this role, he builds machine learning models for clinical workflow augmentation and diagnostics in on-device and cloud use cases. Since studying bioengineering at Penn, Vishnu has been actively working in the fields of computational biomedicine and MLOps. In his spare time, Vishnu enjoys suspending all logic to watch Indian action movies, playing chess, and writing.